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Prediction of structures and mechanical

properties of composites using a genetic

algorithm and finite element method
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A combined method of a genetic algorithm and finite element stress analysis has been
developed to design the structure of materials. The genetic algorithm is applied to
searching structures that have a desired property by combining it with the finite element
analysis, which is used to predict the elastic modulus and Poisson’s ratio. The calculation of
the stress analysis is validated from the comparison with the theory on parallel, series, and
random structures. The combined method was applied to two searches of structures. One
was to find structures that have a desired elastic modulus, respectively. The calculation
successfully found a proper structure for each desired elastic modulus. The other was the
search of the structure that shows a negative Poisson’s ratio. A structure having the
negative Poisson’s ratio was generated by the calculation. Although this original structure
would appear to have no features, it gave us a good idea for the design of materials by
investigating the stress distribution in the original structure. A new structure that consists
of a unique and continuous pattern of the higher elastic component was designed from the
calculation. The reason for the negative Poisson’s ratio is explained by mechanical linkage.
C© 2001 Kluwer Academic Publishers

1. Introduction
Properties of composites such as polymer alloys,
blends, particle-dispersed materials and mixtures,
strongly depend on their microscopic structures. Re-
lationship between microscopic structures and macro-
scopic properties has been experimentally and theo-
retically investigated by many researchers [1–3]. The
basic relation is called the mixture rule, which is a linear
mixture equation on a volume basis and is theoretically
derived from a parallel structure. Various models for
elastic modulus have been summarized by Manson [4]
and Ahmed [5]. Now, computer simulation using a finite
element method has been used to study on the relation
of structures to properties [6–9].

On the contrary, the reconstruction of structures de-
rived from macroscopic properties is also of scientific
and practical concern. This is one of the inverse prob-
lems. Terakiet al. [10] estimated the microstructure
of multiphase composites from experimental data on
macroscopic properties like elastic modulus by inverse
analysis. They assumed that the microstructure were
composed of ellipsoidal reinforcements in a continu-
ous matrix and obtained geometric parameters such as
the aspect ratio and orientation angle of reinforcements.
Recently, genetic algorithms are interested as an evo-
lutionary strategy to improve the adaptability of a sys-
tem. Gutowski [11] presented a solving for the grain-
size distribution for particulate magnetic materials

using the genetic algorithm. Byonet al. [12] applied the
genetic algorithm to optimizing the lamination of hy-
brid thick-walled cylindrical shell under external pres-
sure. Hartke [13] used the genetic algorithm to optimize
the global minimum energy structure of atomic clusters
on an empirical potential energy surface. Sugimoto and
Li [14] reported an application of the genetic algorithm
to the design of the structure composed of composite
materials for the reduction of the production cost of the
structure. They show that the genetic algorithm is use-
ful for the optimization problem in the material science
and engineering.

In this paper, a more attractive application of the ge-
netic algorithm to the materials science and engineering
is presented. A combined method of a genetic algorithm
and finite element stress analysis has been developed
to search structures of composites and mixtures that
satisfy desired properties. To investigate the usefulness
of the combined method, it was applied to the predic-
tion of elastic moduli of some characteristic structures,
finding a structure that have a desired elastic modulus,
and the search of a new structure that shows a negative
Poisson’s ratio.

2. Calculation
2.1. Finite element stress analysis
A finite element stress analysis was applied to predict-
ing the elastic modulus and Poisson’s ratio of mixtures
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Figure 1 Structure and mesh models for the finite element stress
analysis.

Figure 2 Boundary conditions for the finite element stress analysis.

with complex structures. The structure in a square anal-
ysis area with a side length of L is modeled with square
grid cells as a structure model as shown in Fig. 1. Each
cell is attributed to either component A or component B
and then divided into two triangle elements for a mesh
model of the finite element stress analysis. The elastic
modulus and Poisson’s ratio of elements are defined ac-
cording to the cell attribution. For example, the property
data of elements labeled with A are set to be the prop-
erties of component A. Fig. 2 shows a mesh model and
boundary conditions for predicting elastic modulus and
Poisson’s ratio in thex-direction. The analysis area is
stretched by applying anx-directional forced displace-
ment to the right-hand side. The nodes on thex- and
y-axes can only slide in thex- andy-directions, respec-
tively. The rigid elements are virtually introduced out
of the area and along thex-direction to keep the top side
parallel to the bottom one. Under these conditions and
plane stress field, the analysis area will be deformed
from square to rectangular like the broken line shape.
The displacements of the right-hand and top sides,1x
and1y, and nodal forces on the right side,Fx, are ob-
tained from the analysis results. By using these values,
the x-directional elastic modulus,Ex, and Poisson’s
ratio,νx, are calculated as follows, respectively:

Ex = 6Fx

1x
(1)

νx = −1y

1x
(2)

In a similar way, they-directional properties are pre-
dicted by applyingy-directional forced displacements
to the top side as follows:

Ey = 6Fy

1y
(3)

νy = −1x

1y
(4)

2.2. Genetic algorithm
The genetic algorithm is combined with the finite ele-
ment analysis to search the material structure that has
a desired property. Fist of all, to apply the genetic al-
gorithm to the material structure design, the structure
must be related to a string of genes. The planar struc-
ture model is converted to a one-dimensional array as
a string of genes as shown in Fig. 3. In the string of
genes, components A and B are represented with 0 and
1, respectively.

Fig. 4 shows the flow chart for the combined calcula-
tion of the finite element analysis and genetic algorithm.
The main process of the genetic algorithm consists of

Figure 3 Conversion of a structure model to a string of genes.

Figure 4 Flow chart for a combined calculation of the genetic algorithm
and finite element analysis.
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gene creation, initial population, evaluation, selection,
propagation, crossover, and mutation. At first, a set of
individuals of genes is prepared in the gene genera-
tion process. In the initial population, each individual
is initialized to be a random structure generated from a
different seed as a fist generation of evolution. Then, a
target property, the elastic modulus or Poisson’s ratio,
is calculated for every individual by the finite element
stress analysis. The calculated values of the target prop-
erty of the individuals are compared with the desired
one in the evaluation process. The difference between
the desired and calculated properties is examined to
evaluate the fitness of genes. If the difference is less
than the specified criterion, the calculation is finished
as almost structures show the target property in this
generation. Otherwise, the calculation proceeds the se-
lection. The individuals are sorted in ascending order
of the difference and classified into three groups, which
are top, middle, and last ones. The individuals that be-
long to the top group are selected as parents of the next
generation. The genes of the parents replace those of
the individuals in the last group owing to propagation.
Several genes of the copied strings in the last group
are randomly changed from 0 to 1 or from 1 to 0 by
mutation. For the individuals in the middle group, their
genes are partially replaced by those of the parents in
the crossover process. Thus, the selection, propagation,
crossover, and mutation create a new generation. After
that, the stress analysis is carried out for the new genera-
tion again. The loop of the stress analysis to mutation is
repeated until to obtain the new generation that satisfies
the criterion for evaluation.

2.3. Calculation conditions
Calculation conditions for the genetic algorithm and
stress analysis are summarized in Table I. The grid size
used for the calculation is 20× 20 and then the number
of cells or genes is 400. The number of individuals is

TABLE I Calculation conditions for the genetic algorithm and stress
analysis

Grid size 20× 20
Number of individuals 10
Number of genes 400
Number of parents 2
Number of mutants 2
Number of genes for mutation 8
Number of genes for crossover random
Number of individuals for propagation 2
Initial structures random

Application 1
Target property x-elastic modulus
Target values 2.0, 2.5, 3.0
Elastic moduli (EB/EA) 10/1
Poisson’s ratios (νB/νA) 0.4/0.4
Fraction of component B 0.2 (fixed)
Criterion for evaluation 0.001

Application 2
Target property x- andy-Poisson’s ratio
Target value −0.3 (both)
Elastic moduli (EB/EA) 500/1
Poisson’s ratios (νB/νA) 0.4/0.4
Fraction of component B 0.2 (variable)
Criterion for evaluation 0.01

10. At the initial population, the pseudo-random num-
ber generates 10 randomly dispersed structures, which
are different each other because unlike seeds are used.
The stress analysis is carried out to estimate elastic
modulus and Poisson’s ratio every structure. The num-
ber of parents is 2, which is 20% of the generation. The
number of mutants is also 2. The number of genes re-
versed by mutation is 8, which is 2% of the genes. The
number of genes for crossover is automatically decided
for each individual by using the random number during
calculation.

There are two applications of the genetic algorithm
and stress analysis, applications 1 and 2. One is to find
a structure that has a desired elastic modulus in the
x-direction. Target values are 2.0, 2.5, and 3.0. The
elastic moduli of components A and B are 1 and 10,
respectively. The fraction of component B is fixed to
0.3 in volume or area. The other is the search of the
structure with a Poisson’s ratio of−0.3 in bothx- and
y-directions. The negative Poisson’s ratio means that
the composites don’t shrink but expand transversely
if it is stretched. Poisson’s ratios of both components
are 0.4. It is interesting that composites show negative
Poisson’s ratios although both components have posi-
tive ones. The elastic moduli of components A and B
are 1 and 500, respectively. The fraction is 0.2 at the
initial stage but is variable in the evolution process.
The parameters of evaluation are defined as follows,
respectively:

for application 1:

ε1 = |Ex − Ed|
Ed

(5)

for application 2:

ε2 = (|νx − νd| + |νy − νd|)
(2νd)

(6)

whereε is the error,E is the elastic modulus, andν
is Poisson’s ratio. Subscripts 1, 2,x, y, andd indicate
applications 1 and 2, directionsx andy, and the desired
value, respectively. The criteria of evaluation are 0.001
for application 1 and 0.01 for application 2.

The calculation parameters were decided after sev-
eral trial calculations. A workstation (IBM RS6000-
590) and our own FORTRAN program were used for
calculations.

3. Results
3.1. Prediction of elastic modulus using

the finite element method
The finite element stress analysis is verified by compar-
ing calculated values with theoretical ones on elastic
modulus. The parallel model and the series model are
well known to estimate properties of composites. They
are very simple but often used for discussion because
they are basic of the prediction of material properties.
The elastic moduli of parallel model and series one are
theoretically represented as the following equations, re-
spectively:

parallel model:

EC = EA fA + EB fB (7)
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series model:

EC = EA EB

(EA fB + EB fA)
(8)

where f is the volume fraction andfA + fB= 1. Sub-
scripts A, B, and C indicate component A, component
B, and the composite, respectively. For a random struc-
ture, the calculation is compared with Hirsch model.

Hirsch model:

EC = χ (EB fB + EA fA)+ (1− χ )
EBEA

(EB fA + EA fB)

(9)
whereχ is the experimental parameter and is here as-
sumed to be the same as the volume fraction of com-
ponent B. Fig. 5 shows the structure used for the finite
element analyses. This structure is generated using the
pseudo-random number.

Fig. 6 shows the comparison between calculation
and theory in elastic modulus whenEA/EB= 1/10 and
νA = νB= 0.4. The normalized elastic modulusEC/EA

Figure 5 Randomly dispersed structure model (white: component A,
black: component B).

Figure 6 Comparison between calculation and theory in elastic modulus
for parallel, series, and random structure models.

is plotted against the volume fraction of component B.
The elastic modulus of the parallel model lineally in-
creases with increasing volume fraction because the
parallel model corresponds to the simple additive rule.
The value of the series model is smaller than that of the
parallel one. The curve of Hirsch model for the random
structure is located between those of parallel and series
models because Hirsch model is a hybrid of parallel and
series ones. In every case, the calculated results are in
good agreement with the theoretical ones in the whole
range of the fraction. As the results of the comparison,
it was recognized that the finite element stress analysis
gives us reasonable predictions.

3.2. Search of structures with a desired
x-elastic modulus

An average error during the genetic algorithm calcula-
tion is shown in Fig. 7. The average error is obtained
from errors of all individuals except mutants and is plot-
ted against the number of generation. The desired elas-
tic moduli are 2.0, 2.5, and 3.0 in thex-direction under
a constant fraction of 0.3. The average error decreases
with an increase in generation every property. Since
the criterion for evaluation is 0.001, every calculation
is successfully finished. The error is twice below the
criterion to make sure of the convergence. The genera-
tion is the shortest whenEx = 2.0 and the longest when
Ex = 3.0. The number of the generation is due to the
difference between the initial structures and findings.
The structures found by the calculation are illustrated in
Fig. 8. Filled cells refer to component B. Their textures
seem to be granular forEx = 2.0, dendritic forEx = 2.5
and lamellar forEx = 3.0. From these textures, the fi-
nal structure is similar to the initial one forEx = 2.0

Figure 7 Evolution process during the search of structures with desired
x-elastic moduli.

Figure 8 Calculated structures with desiredx-elastic moduli (white:
component A, black: component B).
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but significantly different from that forEx = 3.0. If the
parallel model is included in the first generation as an
initial individual, the solution can be obtained faster in
the case ofEx = 3.0.

The elastic moduli are 1.37 for the series model and
3.7 for parallel one. When the desired elastic modulus
was smaller than 1.37 or larger than 3.7, the calculation
did not find any structures. For the desired elastic mod-
uli between 1.37 and 3.7, the genetic algorithm found
the proper structures. These results are consistent with
the idea that the series model indicates the minimum
value and the parallel one indicates the maximum value.

3.3. Search of structures with a negative
Poisson’s ratio

The average error for evaluation plotted against the gen-
eration is shown in Fig. 9. The average error decreases
gradually with increasing generation until 50 genera-
tions and, after that, drops systematically because of
the action of mutants. The calculation is successfully
finished at 142 generations. Fig. 10 shows the struc-
ture found by the calculation. Since the fraction is vari-
able, its fraction becomes 0.41. The elastic modulus

Figure 9 Evolution process during the search of structures with a nega-
tive Poisson’s ration.

Figure 10 Structure originally found by calculation for showing a neg-
ative Poisson’s ratio (white: component A, black: component B).

Figure 11 Extracted and designed structures from the original one.

Figure 12 Predicted Poisson’s ratio of the designed structure.

is 11.1 close to that of component A. As expected,
this structure can show a negative Poisson’s ratio of
−0.3 in bothx- andy-directions although the structure
seems to have no features. The reason for the negative
Poisson’s ratio is discussed by investigating the stress
distribution. Selecting cells where the absolute value of
stress is higher than the average one draws the center
illustration in Fig. 11. By eliminating extra cells from
the original structure, a singular network appears. It
is thought that this network is important to course the
negative Poisson’s ratio. Since this structure gives us a
good idea, we can easily design the right-hand structure
by modification. The fraction of this designed structure
is 0.13. Although the designed structures would appear
to be quite different from the original one, they are es-
sentially similar in the stress field.

To confirm that the designed structure shows the neg-
ative Poisson’s ratio, a detailed stress analysis for the
designed structure was carried out using a fine grid of
60× 60. The predicted Poisson’s ratios are shown in
Fig. 12 against the ratio of elastic modulus,EB/EA.
Thex- andy-Poisson’s ratios decrease with increasing
ratio of elastic modulus. It is noted that two Poisson’s
ratios almost agree with each other in spite of asymmet-
ric structure on rotation. Both Poisson’s ratios become
zero at about 60 in the ratio of elastic modulus. This
means that such system shows a constant width when it
is stretched. Furthermore increasing the ratio of elastic
modulus, both Poisson’s ratios are negative. When the
ratio of elastic modulus is in vicinity of 150, this sys-
tem shows the desired Poisson’s ratio of−0.3. Fig. 13
shows the predicted elastic modulus for the designed
structure. The predicted elastic modulus increases with
increasing ratio of elastic modulus but its rise is small.
The elastic modulus of the system strongly depends on
that of component A or the matrix. Thex- andy-elastic
moduli are nearly equal.
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Figure 13 Predicted elastic modulus of the designed structure.

Figure 14 Cyclic pattern of the designed structure that shows a negative
Poisson’s ration.

3.4. Discussion
As described above, we designed a new structure that
causes negative Poisson’s ratio from the results calcu-
lated by the genetic algorithm and stress analysis. The
structure illustrated in Fig. 11 is a quarter of the de-
signed structure because of the boundary conditions
for the stress analysis. The full structure is shown in
Fig. 14, which is drawn by reflecting the quarter struc-
ture 6 times in thex- andy-directions according to the
boundary conditions. We can see a unique and contin-
uos pattern in the structure and then understand reason
for the negative Poisson’s ratio from the pattern. The
negative Poisson’s ratio is mechanically caused by link-
age of component B. When the structure is transversely
extended, the curved vertical bars are pulled and lon-
gitudinally expanded by the horizontal ones. On the
contrary, by stretching the curved vertical bars longitu-
dinally, they push the horizontal bars like expanding the
structure transversely. Therefore the elastic modulus of
the component that composes the pattern must be much
larger than that of the matrix. Elastic moduli of typical
materials are summarized in Table II.E/EPPis the ratio
of each elastic modulus against that of polypropylene
andE/ERB is against rubber. To compose the material

TABLE I I Elastic moduli of typical materials

Elastic
modulus Ratio Ratio

Materials E (MPa) E/EPP E/ERB

Glass 71 55 14260
Aluminum 70 54 14060
Steel 210 162 42000
Copper 130 100 26000
Polypropylene (PP) 1.3 1 260
Polyethylene 0.67 1 134
Nylon66 2.30 2 460
Rubber (RB) 0.005 0 1
Epoxy resin 2.4 2 480
Wood 13 10 2600

having a Poisson’s ratio of−0.3, the elastic modulus
of the pattern is necessary to be 150 times larger than
that of the matrix from the stress analysis. There are
two couples in the table. One is the composition of
polypropylene as the matrix and steel as the pattern.
The other is of rubber and polyethylene. The outline of
the composition is a system that consists of metals and
plastics including rubbers. To realize the material hav-
ing a negative Poisson’s ratio, the following construc-
tions are suggested: (1) a metal foil with the designed
pattern is laminated with a polymer film, (2) the pattern
is directly drawn on a polymer film by vacuum vapor
depositing and metallizing.

4. Conclusion
A combined method of a genetic algorithm and finite el-
ement stress analysis has been developed to design the
structure of materials. The finite element stress analy-
sis was used to predict the elastic moduli of composites
with parallel, series, and random structures. The pre-
dicted results were in good agreement with the values
estimated by theoretical models. From this comparison,
it was recognized that the finite element stress analysis
gives us reasonable predictions. The combined method
was applied to two searches. One was to find three struc-
tures that have a desired elastic modulus, respectively.
The calculation successfully found the proper structure
for each desired elastic modulus. The other was the
search of structures that show a negative Poisson’s ra-
tio. The calculation demonstrated a structure with the
negative Poisson’s ratio. Although this original struc-
ture would appear to have no features, it gave us a
good idea for the design of the structure by investi-
gating stress distribution. A new structure that consists
of a unique and continuous pattern of one of the com-
ponents has been designed from the calculation. The
reason for the negative Poisson’s ratio is explained by
mechanical linkage. The composition of metals as the
pattern and plastics as the matrix has been suggested to
realize the material that has a negative Poisson’s ratio.
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